AI算法实现光速级地震监测

2022-05-12 10:47:40     来源:科技日报


AI算法基于PEGS估算大型地震震级示意图,PEGS以光速传播,远快于地震波。图片来源:Lina Jakaite(strike-dip.com)

   科技日报记者 张梦然

英国《自然》杂志11日发表的一项研究显示,一个机器学习模型可以对大型地震的演化进行准确地实时估测,这个经过训练的机器学习模型能测定以光速传播的重力变化信号。

对地震的监测一般需要测定地震波,地震波是在地壳中传播的能量脉冲。然而,基于地震波的预警系统有时候反应太慢,无法在大型地震(矩震级8或以上)发生的 当下准确估算地震规模。有一种解决办法是追踪即时弹性重力信号(PEGS),这种信号以光速传播,由岩体突然错动导致重力变化而产生。不过,PEGS是否 能用来对大型地震出现后的方位和发展做出快速可靠的实时估算,一直有待验证。

来自法国蔚蓝海岸大学、法国发展研究院、法国国家科学研究中心、蔚蓝海岸天文台的科学家们此次在日本1400个潜在地震位置模拟了35万个地震情景,并利 用PEGS信号训练了一个深度学习模型(PEGSNet)。之后,研究人员又用2011年日本东北大地震的实时数据测试了这个模型,2011年日本东北大 地震是迄今有记录的规模最大、破坏力最强的地震之一。

研究人员发现,PEGSNet能准确计算地震方位、地震规模以及地震随时间的变化。重要的是,PEGSNet能快速给出以上信息,在地震波到达前就做出判断。

研究人员总结道,PEGSNet在大型地震及其演化(从地表破裂到可能出现的相关海啸)的早期监测方面或能发挥重要作用。虽然这个模型主要针对日本,但他们强调,该模型也能很好地适用于其他地区,只需很小的调整就能实时使用这一策略。


科技新闻传播、科技知识普及 - 中国科技新闻网
关注微信公众号(kjxw001)及微博(中国科技新闻网)
微信公众号
微博

免责声明

中国科技新闻网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考,不构成投资建议。投资者据此操作,风险自担。


推荐阅读
已加载全部内容
点击加载更多